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ABSTRACT: In this paper, we have done the literature review on stability results of fixed point iteration 

procedure using different contraction conditions in various spaces. 
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I. INTRODUCTION 

The fixed point theory is a very important field of 
research during the last decade. Many research papers 

are published on this topic during this period making 

this a very important researching area. 

The problem on  nonlinear equation are solved by 

approximating fixed 

points of a corresponding contractive type mapping.  So 

many methods are there to approximate fixed points. 

Practically it is important to show that these methods 

are stable or not. A fixed point iteration is said to be 

numerically stable if some variations occurs due to 

approximation at the time of computations, will create 

variations on the approximate value obtained by this 
method. The concept of stability is useful in various 

domains of mathematics which are as follows: 

Differential Equations, Integral equations, Difference 

Equations, Numerical Analysis, Game theory etc. Our 

interest is to review the work done by various authors 

on stability of fixed point iteration procedure using 

different contraction conditions. 

II. PRELIMINARIES 

Types of iteration methods: There exists several 

methods for approximating fixed points. Let (X, d) be a 

complete metric space and T: X→X  a selfmap of X. 
Suppose that  FT ={ p Є X, Tp = p} is the set of fixed 

points of T. There are several iterative processes in the 

literature for which the fixed points of operators have 

been approximated over the years by various authors. 

1) For x0 Є X, the sequence {��}�=1
∞

  given by  

��+1 = T��, n ≥ 0  …(1) 

Is said the picard iteration  

2) Let E be a  Banach space and T a mapping from E to 

E is a self map of E. For x0 Є E, the sequence {��}�=1
∞

  

given by          ��+1= (1 − ∝�)	�� + ∝�T��, …(2) 

where {��}�=0
∞

 is a real sequence in [0,1) such that 

∑ ��
∞
�=0 =∞ is called the Mann iteration. If we put 

�� = 1 in equation (2) we get the picard iteration. 

3) For x0 Є E, the sequence {��}�=0
∞

 defined by 

                   ��+1 = (1 −��)	�� + ��T�� 

                  �� = (1 −�
�
)	�� + �

�
T��, 

where {��}n≥1 and {�
�
}n≥1 are sequences in [0, 1) 

and satisfy      ∑ ��
∞

�=0 = ∞ is said  the Ishikawa 

iteration. If we put �
�
 = 0 then the ishikawa iteration 

becomes the mann iteration. 

4) For x0 Є E, the sequence {��}�=0
∞

 defined by 

��+1 = (1 −��)	�� + ��T�� 

��= (1 −�
�
)	�� + �

�
T��, 

��= (1 −�
�
)	�� + �

�
T��, 

where {��}n≥1 , {�
�
}n≥1, {�

�
}n≥1  are sequences in 

[0, 1) and satisfy  ∑ ��
∞
�=0 = ∞ is said Noor iteration or 

three step iteration. We know that if we put  �
�
 = 0 for 

each n, then the Noor iteration becomes the Ishikawa 

iteration. 

5) For x0 Є E, the sequence {��}�=0
∞

 defined by 

��+1 = (1 −��)	�� + ��T��
1 

��
� = (1 −�

�

� )	�� + �
�

� T��
�+1, � = 1,2,…… . . , � − 2 

��
�−1= (1 −�

�

�−1)	�� + �
�

�−1T�� , � ≥ 2 

Where {��}n≥1 ,	{��
� } , � = 1,2,…… , � − 1 are 

sequences in [0,1) and satisfy 

 ∑ ��
∞
�=0 = ∞  Is said multistep iteration.  

 

 

 

International Journal of Theoretical & Applied Sciences,   Special Issue-NCRTAST   8(1): 106-108(2016)    



                                                                               Rajput, Tenguria
 
and Ojha                                                     107 

Stability: 
The first important result on the stability of a fixed 

point procedure was studied by Ostrowski [28] in the 

case of Banach contraction mapping. 

Let E be a real Banach space and let T be a mapping 

defined on E. Let    �� ∈ �  be arbitrarily chosen and let   

��� = !(#, ��)      for all n ≥ 0 

be an iteration process generating the sequence {�� } n≥ 

0 in E. Suppose T has at least  one fixed point �∗ ∈ � 

and �� → �∗  as n→∞. Let {��} n≥ 0 C E be any 

sequence and set 

'�= ‖��� 	 − !(T, ��	)‖ , n≥ 0 

The iteration process {�� } n≥ 0  is said to be T- stable or 

stable with respect to T if 

log�→∞ '� = 0 

log�→∞‖��	– �
∗‖ 

III. REVIEW 

The study of the stability of a fixed point iterative 

procedure of Banach contraction mappings was first 

done by Ostrowski [28]. After this study, so many 

authors developed this subject with certain contractive 

definitions. Some major developments are as follows-In 

1988 Harder and Hicks [10], in 1990,1991 Rhoades , in 

1996 Osilike [22] and in 1995 Osilike [23] in 2007 
Berinde [6] and in 2002 Berinde [4] ,in 1997 Jachymski 

[11], in 2006 Olatino, Owojori and Imoru [16], [17] etc. 

In the year 1995 M.O. Osilike [24] generalised some 

results of Rhoades [32,33,34] which are already the 

generalised results of Harder and Hicks [ 10 ] and 

proved the stability results for Ishikawa fixed point 

iteration procedure.  While in the year 1996, 

M.O.Osilike [25] proved stability of Mann iteration 

procedure for quasi contractive mappings in Banach 

spaces. After this, in the year 1997, M. O. Osilike [26]  

extended  this stability of Mann iteration procedure in 
q-uniformly smooth and p-uniformly convex Banach 

spaces to Ishikawa iteration method for quasi-

contraction maps. While in the year 1997, Chika moore 

[14] discussed about the T-stability and strong 

convergence of the Mann and Ishikawa iteration 

procedures for certain non linear operator 

equations.Again in the year 1999, M.O. Osilike and  A 

Udomene [27] obtained  short proofs of several  

stability results for fixed point iteration  procedures 

established by Harder and Hicks.  

In the year 2002, Zeging Liu et al [12] worked on 

strictly successively hemicontractive mappings and 
established stable and almost stable iteration procedures 

in Banach spaces. After this in the year 2003, Zeging 

Liu et al [13]  worked on strictly hemi-contractive 

operators  and proved stability in smooth Banach 

spaces. He also generalised the results given in [8],[29]. 

In the year 2006, M. O. Olatinwo et al [17] worked for 

the stability of Krasnoselskij and Ishikawa iteration 

procedure with contractive condition  which is the 

generalised condition used by Berinde [4], Rhoades 
[33], Harder and Hicks [10] and Osilike [23]. In the 

year 2008, Olatinwo [19] worked on stability results in 

normed linear space for two hybrid fixed point iteration 

of kirk-ishikawa and kirk-mann. He generalised the 

results of Harder and Hicks [10], Rhoades [32,33], 

Osilike [23], Berinde[3,4] and the results of various 

authors [11,16,17,18]. Again  in the year 2008, Yuang 

Qing et al [30] worked in metric space to establish T-

stability of Picard iteration. While in the year 2009, 

Memudu Olaposi Olatinwo [20] worked with the 

contraction conditions which are generalisation of the 

conditions used by  Berinde [4], Imoru and Olatinwo 
[11] and established the stability results for the picard 

iteration  in complete metric space.  In the year 2009, J. 

O. Olaleru et al [15] worked on the stability of different 

iterative procedures with errors and established almost 

stability for quasi- contractive maps for Mann,, 

Ishikawa and Kirk iteration procedures and in the year 

2010 Ioana Timis [35] worked on the concept of weak 

stability for picard iteration procedure satisfying some 

contraction conditions.  

In the year 2011, Memudu  Olaposi  Olatinwo [21] 

established  the stability results for iteration procedures 
in convex metric spaces satisfying certain contractive 

conditions. Also in 2011, Sh. Rezapour et al [31] 

worked on integral type contraction conditions and 

proved T- stability of Picards iteration procedure and  

almost T-stability of Mann  iteration procedures .While 

in her paper Zamfirescu maps and it’s stability on 

generalised spaces, Abha Singh [1] Worked on 

generalised metric spaces and established stability 

results. In the year 2013, H. Akewe et al [2] worked on 

the concept of strong convergence and stability of 

multiple iterative procedure. In this paper they also 

established stability results for Ishikawa, Mann, Noor 
and Picards iteration procedures. They also generalised 

the results of Berinde [5], Bosede and Rhoades [7], 

Imoru and Olatinwo [11] and Osilike [24]. In the year 

2014, Faik Gursoy et al [9] introduced some new 

iterative algorithm known as Kirk multistep iteration 

and established stability results for Kirk multistep and 

Kirk- SP iterative procedure satisfying certain 

contraction conditions. 
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